Petrophysik:

 

 

 

Update of the permeability of crystalline rocks, 2001

 

A number of scientific wells recently drilled into basement and metamorphic rocks provide insight in the permeability structure of the crust. Permeability k was measured both on a small scale, on drill cores in the laboratory (mostly under simulated in situ pressures), and, on a larger scale, in the boreholes themselves. Interpretation of water losses from hydropower adits (i.e. large-scale Lugeon tests) and of groundwater travel times inferred from 14C ages provides regional permeability averages on the 1 – 10 km scale.
This data from a total of eighty-two locations worldwide is shown in 1 and Table 1. It updates the previous one [Clauser, 1992] by 22 %. In view of the obvious scale effect and in spite of the data scatter,the permeability range 10-17 m2 < k < 10-13 m2 for regional scale averages suggests that there are portions of the crust in which sufficiently connected, fluid-filled voids permit diffusion or advection of dissolved gases or heat.
This is consistent with a decrease of an average permeability in the continental crust from 10-16 m2 – 10-18 m2 between 5 – 12 km depth, which was estimated from an interpretation of data from thermal and metamorphic systems [Manning and Ingebritsen, 1999].

request figure

Fig. 1 Range of measured or inferred permeability of basement and metamorphic rocks at 82 locations (Table 1) as a function of the characteristic length scale (circles: laboratory measurements- diamonds: intact and cracked sample (at 22 MPa confining pressure); squares: in situ single and double packer tests, asterisks: tracer tests, stars: indirect methods; updated from Clauser [1992]). Shading suggests a trend for the scale effect of permeability with respect to the characteristic length scale.

Table 1. Sequence number, site, and reference (from left to right) for all 82 permeability values shown in Figure 

Number
Site
Reference
Laboratory Data
 
 

1

Kola SG-3

[Bayuk et al., 1987]

2

Kola SG-3

[Lockner et al., 1991]

3

Urach 3

[Huenges and Will, 1989]

4

Cajon Pass

[Morrow and Byerlee, 1988]

5

KTB Kunklerwald

[Huenges and Will, 1989]

6

KTB Geschahse

[Huenges and Will, 1989]

7

KTB-VB

[Berckhemer et al., 1997]

8

KTB-HB

[Berckhemer et al., 1997]

9

Falkenberg NB1, NB2, NB3

[Pape and Schopper, 1987]

10

Soultz GPK1

[Rummel, 1990]

11

Lac du Bonnet Batholith WN1, WN2

[Davison et al., 1979]

12

Barre Granite

[Kranz et al., 1979]

13

Westerly Granite

[Heard et al., 1979]

14

White Lake Gneissic Granite

[Heard et al., 1979]

15

Los Alamos GT-2

[Potter, 1978]

16

Sherman Granite

[Pratt et al., 1977]

17

Westerly Granite

[Brace et al., 1968]

18

Äspö hard rock laboratory

[Emsley et al., 1997]

19

Stripa mine

[Birgersson and Neretnieks, 1990]

20

Äspö hard rock laboratory

[Emsley et al., 1997]

21

Stripa mine

[Birgersson and Neretnieks, 1990]

22

fractured Granite, Stripa mine

[Makurat, 2001]

 
In Situ Data
 
 

 

Packer Tests, Test Interval < 100 m

 

23

Cajon Pass

[Coyle and Zoback, 1988]

24

KTB-VB

[Huenges et al., 1997]

25

KTB-VB

[Pape et al., 1999]

26

KTB-HB

[Huenges et al., 1997]

27

Nagra Böttstein

[Leech et al., 1984]

28

Nagra Weiach

[Butler et al., 1989]

29

Nagra Schafisheim

[Moe et al., 1989]

30

Nagra Kaisten

[McCord and Moe, 1989]

31

Nagra Leuggern

[Belanger et al., 1989]

32

Nagra Siblingen

[Ostrowski and Kloska, 1989]

33

Los Alamos GT-2

[West et al., 1975, Delisle, 1975]

34

Lengenfeld LII-16, LV-17

[Jung, 1978, Rummel, 1979]

35

Falkenberg HB4a, NB1

[Jung, 1980, Rummel, 1979]

36

Fjällbacka 1

[Eliasson et al., 1988]

37

Grimsel rock laboratory

[Pahl et al., 1986]

38

Stripa mine

[Gale and Rouleau, 1982]

39

Kikuma Storage Cavern

[Oda et al., 1989]

40

Savannah River Plant

[Marine, 1981; 1967]

41

Sykesville Granite

[Voegele et al., 1981]

42

Montello Granite

[Haimson et al., 1978]

43

Rocky Mountain Arsenal

[Pickett, 1968]

44

Rocky Mountain Arsenal

[van Pollen and Hoover, 1970]

45

Lac du Bonnet Batholith WN1, WN2

[Davison et al., 1979]

46

Swedish Gas Storage Caverns

[Lindblom, 1979]

47

563 pump tests in 55 shallow drillholes in Swedish granite and gneiss

[Carlsson and Olsson, 1978]

48

5532 injection tests at 35 reservoirs in bedrock in the western U.S.

[Snow, 1968, Bianchi and Snow, 1969]

49

Sherman Granite

[Pratt et al., 1977]

50

Äspö hard rock laboratory

[Emsley et al., 1997]

51

Grimsel rock laboratory

[Liedtke et al., 1994]

52

400 pump tests in German granite and gneiss

[Stober, 1996]

 

 

 

 

Tracer Tests

 

53

Savannah River Plant

[Marine, 1981]

54

Studsvik, Sweden

[Carlsson et al., 1979]

55

Finnsjøn, Sweden

[Carlsson et al., 1979]

 

 

 

 

Packer Tests, Test Interval > 100 m

 

56

Nagra Böttstein

[Leech et al., 1984]

57

Nagra Weiach

[Butler et al., 1989]

58

Nagra Schafisheim

[Moe et al., 1989]

59

Nagra Leuggern

[Belanger et al., 1989]

60

Nagra Siblingen

[Ostrowski and Kloska, 1989]

61

Los Alamos GT-2

[West et al., 1975]

62

Rosemanowes RH6A, RH6B, RH6C, RH6D

[Batchelor, 1979]

63

Fjällbacka 0

[Eliasson et al., 1988]

64

Soultz GPK1

[Jung, 1990]

65

Soultz GPK2

[Jung et al., 1995]

66

Sykesville Granite

[Voegele et al., 1981]

67

Winslow UPH3

[Haimson and Doe, 1983]

68

Monticello I, II

[Zoback and Hickman, 1982]

 

 

 

 

Lugeon Tests in Hydropower Adits

 

69

Bocheresse-Fionnay

[Gysel, 1984]

70

Mattsand-Ackersand

[Gysel, 1984]

71

Nalps-Tgom

[Gysel, 1984]

72

Les Toules-Pallazuit

[Gysel, 1984]

73

Albigna-Murtaira

[Gysel, 1984]

 

 

 

 

Ventilation Tests in Mines

 

74

Stripa ventilation drift

[Wilson et al., 1983]

 

 

 

 

Calibration of Numerical Models

 

75

Kikuma oil storage cavern

[Oda et al., 1989]

76

KTB-HB

[Zimmermann et al., 2000]

 

 

Measurement of flow into tunnels and caverns

 

77

3 gas storage tunnels in Swedish granite

[Lindblom, 1979]

78

73 drifts or caverns at 17 sites in Swedish granite
and gneiss

[Bergmann, 1978]

 

 

 

 

Flow System Analysis and Isotopic Age Determinations

 

79

Mont Blanc motorway Tunnel

[Bortolami et al., 1979]

80

 

Savannah River Plant

[Marine, 1981]

 

 

 

 

Propagation of Seismic Events by Pore Water Diffusion

 

81

Monticello reservoir

[Zoback and Hickman, 1982]

82

reservoirs at Hsingfengkiang, Lake Jocassee,
Koyna, Monticello, and Oroville

[Talwani and Acree, 1985]

 

References

Batchelor, A. S., Permeability Enhancement Studies in South West England, 1st Annual Report EEC 497-78-1 EG/UK, Camborne School of Mines, United Kingdom, Trevenson, Pool, Redruth, Cornwall,  1979.

Bayuk, E. I., B. P. Belikov, L. I. Vernik, M. P. Volarovitch, Y. I. Kuznetsov, G. E. Kuzmenkova, and N. N. Pavlova, Rock Density, Porosity, and Permeability, in The Superdeep Well of the Kola Peninsula, edited by Y. A. Kozlovsky, 332-338,  Springer, Berlin - Heidelberg, 1987.

Belanger, D. W., G. A. Freeze, J. L. Lolcama, and J. F. Pickens, Interpretation of Hydraulic Testing of Crystalline Rock at the Leuggern Borehole, Nagra technical report, NTB 87-19, National Cooperative for the Disposal of Radioactive Waste (NAGRA), Baden, Switzerland,  1989.

Berckhemer, H., A. Rauen, H. Winter, H. Kern, A. Kontny, M. Lienert, G. Nover, J. Pohl, T. Popp, A. Schult, J. Zinke, and H. C. Soffel, Petrophysical properties of the 9-km-dep crustal section at KTB, J. Geophys. Res., 102(B8), 18337‑18361, 1997.

Bergmann, S. M., Groundwater Leakage into Tunnels and Storage Caverns. A Documentation of Factual Conditions at 73 Caverns and Tunnels in Sweden, in Storage in Excavated Rock Caverns. Rockstore 77 - Proc. 1st Int. Symposium, Stockholm, September 5-8 1977, edited by S. M. Bergman, 267-273,  Pergamon Press, Oxford, 1978.

Bianchi, L., and D. T. Snow, Permeability of crystalline rock interpreted from measured orientations and apertures of fractures, Ann. Arid Zone (Jodhpur), 8(2), 231-245, 1969.

Birgersson, N., and I. Neretnieks, Diffusion in the matrix of granitic rock: field test in the Stripa mine, Water Resour. Res., 26(11), 2833-2842, 1990.

Bortolami, G. C., J.-C. Fontes, D. Lale-Demoz, P. Olive, L. Quijano, and G. M. Zuppi, Infiltration Rate through the Crystalline Massif of Mont-Blanc Evidenced by Environmental Isotope Measurements, in Low-Flow, Low-Permeability Measurements in Largely Impermeable Rocks, Proc. Workshop, Paris, March 19-21 1979, edited by OECD Nuclear Energy Agency  and  IAEA, 237-247,  OECD, Paris, 1979.

Brace, W. F., J. B. Walsh, and W. T. Frangos, Permeability of Granite under High Pressure, J. Geophys. Res., 73(6), 2225-2236, 1968.

Butler, G. A., T. L. Cauffman, J. L. Lolcama, D. E. Longsine, and J. A. McNeish, Interpretation of Hydraulic Testing at the Weiach Borehole, Nagra technical report, NTB 87-20, National Cooperative for the Disposal of Radioactive Waste (NAGRA), Baden, Switzerland,  1989.

Carlsson, A., and T. Olsson, Variations of Hydraulic Conductivity in some Swedish Rock Types, in Storage in Excavated Rock Caverns. Rockstore 77 - Proc. 1st Int. Symposium, Stockholm, September 5-8 1977, 2, edited by S. M. Bergman, 301-307,  Pergamon Press, Oxford, 1978.

Carlsson, L., G. Gidlund, K. Hansson and C.-E. Klockars, Estimation of Hydraulic Conductivity in Swedish Precambrian Crystalline Bedrock, in Low-Flow, Low-Permeability Measurements in Largely Impermeable Rocks, Proc. Workshop, Paris, March 19-21 1979, edited by OECD Nuclear Energy Agency and  IAEA, 97-115,  OECD, Paris, 1979.

Clauser, C., Permeability of Crystalline Rocks, EOS Trans. Am. Geophys. Union, 73(21), 233, 237, 1992.

Coyle, B. J., and M. D. Zoback, In Situ Permeability and Fluid Pressure Measurements at ~2km Depth in the Cajon Pass Research Well, Geophys. Res. Lett., 15(9), 1029-1032, 1988.

Davison, C. C., G. E. Grisak, and D. W. Williams, Field Permeability and Hydraulic Potential Measurements in Crystalline Rock and Solute Transport through Finely Fractured Media, in Low-Flow, Low-Permeability Measurements in Largely Impermeable Rocks, Proc. Workshop, Paris, March 19-21 1979, edited by OECD Nuclear Energy Agency  and  IAEA, 139-154,  OECD, Paris, 1979.

Delisle, G., Determination of Permeability of Granitic Rocks in GT-2 from Hydraulic Fracturing Data, Report LA-6169-MS, Los Alamos Scientific Laboratory, Los Alamos, NM,  1975.

Eliasson, T., U. Sundquist, and T. Wallroth, Rock Mass Characteristics at the HDR Geothermal Research Site in the Bohus Granite, SW Sweden, Publ. Fj-5, Dept. Of  Geology, Chalmers University of Technology, Göteborg, 1988.

Emsley, S., O. Olsson, L. Stenberg, H.-J. Alheid, and S. Falls, ZEDEX – A study of damage and disturbance from tunnel excavation by blasting and tunnel boring, SKB Technical Report 97-30, Swedish Nuclear Fuel and Waste Management Co. (SKB), Stockholm, Sweden, 1997.

Gale, J. E., A. Rouleau, P. A. Witherspoon, and C. R. Wilson, Progress in the Hydrogeological Characterization of the Stripa Site, Report LBL-14878 / SAC-49 / UC-70, Berkeley, Ca., Lawrence Berkeley Laboratory,  1982.

Gysel, M., Bestimmung der Felsdurchlässigkeit aufgrund von Stollen-Abpressversuchen, Wasser, Energie, Luft - eau, energie, air, 76(7/8), 165-170, 1984.

Haimson, B. C., and T. W. Doe, State of Stress, Permeability, and Fractures in the Precambrian Granite of Northern Illinois, J. Geophys. Res., 88(B9), 7355-7371, 1983.

Haimson, B. C., T. W. Doe, and G. F. Fuh, Geotechnical Investigation and Design of Annular Tunnels for Energy Storage, in Storage in Excavated Rock Caverns. Rockstore 77 - Proc. 1st Int. Symposium, Stockholm, September 5-8 1977, 2, edited by M. Bergman, 275-282, Pergamon Press, Oxford, 1978.

Heard, H. C., D. Trimmer, A. Duba, and B. Bonner, Permeability of Generic Repository Rocks at Simulated In Situ Conditions, in Low-Flow, Low-Permeability Measurements in Largely Impermeable Rocks, Proc. Workshop, Paris, March 19-21 1979, edited by OECD Nuclear Energy Agency  and  IAEA, 69-83,  OECD, Paris, 1979.

Huenges, E., J. Erzinger, J. Kück, B. Engeser, and W. Kessels, The permeable crust: geohydraulic properties down to 9101 m depth, J. Geophys. Res., 102(B8), 18255‑18265, 1997.

Huenges, E., and G. Will, Permeability, Bulk Modulus and Complex Resistivity in Crystalline Rocks, in Fluid Movements - Element Transport and the Composition of the Deep Crust. NATO ASI Series, C 281, edited by D. Bridgwater, 361-375,  Kluwer Academic Publishers, Dord­recht, 1989.

Jung, R., Bericht über Permeabilitätsmessungen im Falkenberger Granit-Massiv/Nordbayern, Report Nr. 80 443, Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover,  1978.

Jung, R., Hydraulische Experimente 1979 im Experimentierfeld bei Falkenberg / Oberpfalz, Report Nr. 86 151, Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover,  1980.

Jung, R., Hydraulic Fracturing and Hydraulic Testing in the Granitic Section of Borehole GPK1, Soultz-sous-Forêts, Final Report BMFT 0326425 B / EC EN3G-0080-D(B), Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover,  1990.

Jung, R., W. Reich, U. Engelking, T. Hettkamp, and R. Weidler, Hydraulic Tests 1995, SOCOMINE Field Report, Société de coopération minière et industrielle SA (SOCOMINE), Soultz-sous-Forêts, France, 1995.

Kranz, R. L., A. D. Frankel, T. Engelder, and C. H. Scholz, The Permeability of Whole and Jointed Barre Granite, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 16, 225-234, 1979.

Leech, R. E., K. G. Kennedy, and D. Gevaert, Sondierbohrung Böttstein - Hydrological Testing of Crystalline Rocks, Nagra technical report, NTB 85-09, National Cooperative for the Disposal of Radioactive Waste (NAGRA), Baden, Switzerland,  1984.

Liedtke, L., A. Götschenberg, M. Jobmann, and W. Siemering, Grimsel test site fracture system flow test – experimental and numerical investigations of mass transport in fractured rock, NAGRA Technical Report 94-02E, National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen, Switzerland, 1994.

Lindblom, U. E., Comparison of Flow and Permeability Interpreted from In-Situ Measurements in a Granitic Rock, in Low-Flow, Low-Permeability Measurements in Largely Impermeable Rocks, Proc. Workshop, Paris, March 19-21 1979, edited by OECD Nuclear Energy Agency  and  IAEA, 125-136,  OECD, Paris, 1979.

Lockner, D., S. Hickman, V. Kuksenko, A. Ponomarev, A. Sidorin, J. Byerlee,  and B. Khakaev, Laboratory-determined permeability of cores from the Kola superdeep well, USSR, Geophys. Res. Lett. 18(5), 881-884, 1991.

Makurat, A., Normal and Shear Stress Dependent Single Phase Fracture and Fracture Cross Flow in Different Lithologies, Proceedings “Fractured Rock 2001” (CD), Toronto, Ontario, Canada, March 26-28, 2001.

Manning, C. E., and S. E. Ingebritsen, Permeability of the continental crust: implications of geothermal data and metamorphic systems, Rev. Geophys., 37(1), 127-150, 1999.

Marine, I. W., The Permeability of Fractured Crystalline Rock at the Savannah River Plant near Aiken, South Carolina,  Department of the Interior, U.S. Geological Survey, Prof. Paper 575-B, B203-B211, 1967.

Marine, I. W., Comparison of Laboratory, in Situ, and Rock Mass Measurements of the Hydraulic Conductivity of Metamorphic Rock at the Savannah River Plant Near Aiken, South Carolina, Water Resour. Res., 17(3), 637-640, 1981.

McCord, J. P., and H. Moe, Interpretation of Hydraulic Testing at the Kaisten Borehole, Nagra technical report, NTB 89-18, National Cooperative for the Disposal of Radioactive Waste (NAGRA), Baden, Switzerland,  1989.

Moe, H., J. A. McNeish, J. P. McCard, and R. W. Andrews, Interpretation of Hydraulic Testing at the Schafisheim Borehole, Nagra technical report, NTB 89-09, National Cooperative for the Disposal of Radioactive Waste (NAGRA) Baden, Switzerland,  1989.

Morrow, C., and J. Byerlee, Permeability of Rock Samples from Cajon Pass, California, Geophys. Res. Lett., 15(9), 1033-1036, 1988.

Oda, M., T. Saitoo, and K. Kamemura, Permeability of Rock Masses at Great Depth, in Rock at Great Depth, edited by V. Maury  and D. Fourmaintraux, 449-455,  Balkema, Rotterdam, 1989.

Ostrowski, L. P., and M. B. Kloska, Final Interpretation of Hydraulic Testing at the Siblingen Borehole, Nagra technical report, NTB 89-10, National Cooperative for the Disposal of Radioactive Waste (NAGRA), Baden, Switzerland,  1989.

Pahl, A., V. Bräuer, S. Heusermann, B. Kilger, and L. Liedtke, Results of Engineering Geological Research in Granite, Bull. Int. Assoc. Eng. Geol., 34, 59-65, 1986.

Pape, H., and J. R. Schopper, Fractal Description of the Falkenberg Granite Microfissure System as Derived from Petrophysical and Microscopical Investigations, Geol. Jb., E 39, 149-166, 1987.

Pape, H., C. Clauser and J. Iffland, Permeability prediction based on fractal pore-space geometry, Geophysics, 64(5), 1447-1460, 1999.

Person, M., and G. Garven, Hydrologic constraints on petroleum generation within continental rift basins: theory and application to the Rhine graben, AAPG Bull, 76(4), 468-488, 1992.

Person, M., and  Garven G., A sensitivity study of the driving forces on fluid flow during continental-rift basin evolution, Geol. Soc. Am. Bull., 106, 461-475, 1994.

Pickett, G. R., Properties of the Rocky Mountain Arsenal Disposal Reservoir and their Relation to Derby Earthquakes, in Geophysical and Geological Studies of the Relationships between the Denver Earthquakes and the Rocky Mountain Arsenal Well (Part A), Quarterly of the Colorado School of Mines, 63(1), edited by J. C. Hollister  and R. J. Weimer, 73-100, 1968.

Potter, J. M., Experimental Permeability Studies at Elevated Temperature and Pressure of Granitic Rocks, PhD Thesis, report LA-7224-T, Los Alamos Scientific Laboratory, Los Alamos, NM,  1978.

Pratt, H. R., H. S. Swolfs, W. F. Brace, A. D. Black, and J. W. Handin, Elastic and Transport Properties of an In Situ Jointed Granite, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 14, 35-45, 1977.

Rummel, F., Gesteinsphysikalische Daten des Falkenberger Granits, Annual report BMFT ET-4150 / CEC E-8(D), Institut für Geophysik, Ruhr-Universität Bochum,  1979.

Rummel, F., Physical Properties of the Rock in the Granitic Section of Borehole GPK1, Soultz-Sous-Forets, Report BMFT 26579 A+B / EC EN-3G-0092-D, Institut für Geophysik, Ruhr Universität Bochum, Germany,  1990.

Snow, D. T., Fracture Deformation and Changes of Permeability and Storage upon Changes of Fluid Pressure, in Geophysical and Geological Studies of the Relationships between the Denver Earthquakes and the Rocky Mountain Arsenal Well (Part A), Quarterly of the Colorado School of Mines, 63(1), edited by J. C. Hollister  and R. J. Weimer, 201-244, Golden, Co.lorado, 1968.

Stober, I., researchers study conductivity of crystalline rock in proposed radioactive waste site, EOS Trans. Am. Geophys. Union, 77(10), 93-94, 1996.

Talwani, P., and S. Acree, Pore Pressure Diffusion and the Mechanism of Reservoir-Induced Seismicity, Pure Appl. Geophys., 122, 947-965, 1985.

van Pollen, H. K., and D. B. Hoover, Waste Disposal and Earthquakes at the Rocky Mountain Arsenal, Derby, Colorado, J. Petrol. Technol., 22, 983-993, 1970.

Voegele, M., R. McCain, M. Gronseth, and H. Pratt, In Situ Permeability Measurements for an Underground Compressed Air Storage Project, in Well Testing in Low Permeability Environments. Proc. 3rd Invitational Well-Testing Symposium, Berkeley, Ca., March 26-28 1980, LBL-12076 / UC-70, edited by T. W. Doe  and W. J. Schwarz, 45-50,  Lawrence Berkeley Laboratory, Berkeley, California, 1981.

West, F. G., P. R. Kintzinger, and W. D. Purtymun, Hydrologic Testing Geothermal Test Hole No. 2, Report LA-6017-MS, Los Alamos Scientific Laboratory, Los Alamos, NM,  1975.

Wilson, C. R., P. A. Witherspoon, J. C. S. Long, R. M. Galbraith, A. O. DuBois, and M. J. McPherson, Large-Scale Hydraulic Conductivity Measurements in Fractured Granite, Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., 20(6), 269-276, 1983.

Zimmermann, G., A. Körner, and H. Burkhardt, Hydraulic pathways in the crystalline rock of the KTB, Geophys. J. Int., 142, 4-14, 2000.

Zoback, M. D., and S. Hickman, In Situ Study of the Physical Mechanisms Controlling Induced Seismicity at Monticello Reservoir, South Carolina, J. Geophys. Res., 87(B8), 6959-6974, 1982.