

OBSERVATÓRIO NACIONAL 2009

Joint inversion of heat flow, elevation, geoid height:

Determination of deep temperature field in geothermal areas.

Alexandrino, C.H. and Hamza, V. M.

Observatório Nacional / MCT Rio de Janeiro, Brazil

Scope of the present work

An understanding of the deep temperature field of the crust is often considered important in exploration and assessment of geothermal resources.

Usually results of regional heat flow studies are employed for this purpose. However, this approach does not always lead to satisfactory results because of problems arising from limited availability of suitable boreholes.

In the present work we propose a method for extracting supplementary information on deep temperature field, from a knowledge of the conditions of thermal isostasy. In practice, this amounts to joint inversion of data sets on heat flow, elevation and geoid height. The advantage here is that suitable high density data on elevation and geoid height can be acquired with relative ease, and in addition, these do not depend on availability of boreholes. Joint Inversion of Heat flow, Elevation and Geoid Height

The assumptions are:

1- Conditions of thermal isostasy prevail;

2- Lateral changes in density are small compared to vertical changes.

Under such conditions the geoid height is proportional to the dipole moment of the vertical distribution of density, which in turn is also temperature dependent.

(Ockendon e Turcotte, 1977; Turcotte e Oxburgh, 1982):

$$N = -\frac{2\pi G}{g} \int_{cL} z \cdot \rho(z) dz + N_0$$

Mass balance relations for lithosphere under conditions of thermal isostasy (Lachenbruch and Morgan, 1990)

$$L\rho_{l} = (L - H)\rho_{a} \qquad \rho_{a}H = (\rho_{a} - \rho_{l})L \quad (1)$$

$$\varepsilon = H - H_{0} \qquad \varepsilon > 0 \quad (2)$$

$$\varepsilon = \frac{\rho_a - \rho_l}{\rho_a} L - H_0, \qquad \varepsilon > 0 \qquad (3)$$

L – thickness of lithosphere (km) ρ_1 – density of lithosphere (g/cm³) ρ_a – density of asthenosphere (g/cm³) H – difference in height (km) H₀ – Elevation of asthenosphere (km) e – Elevation above sea level (km)

Isostatic balance – Formal relations for regions affected by tectonic processes

Geope of 'dry' asthenosphere

$$\varepsilon + H_0 = \frac{\varepsilon_0 + H_0}{\beta} + \left(1 - \frac{1}{\beta}\right)\Sigma, \qquad \varepsilon > 0$$

Hydrogeope of asthenosphere

$$\varepsilon + \Delta_0 = \frac{\varepsilon_0 + \Delta_0}{\beta} + \left(1 - \frac{1}{\beta}\right) \frac{\rho_a}{\rho_a - \rho_w} \Sigma, \qquad \varepsilon < 0$$

where β is the stretching factor, Σ is the contributions by other processes

Consider a lithosphere composed of four layers:

Sea water, Crust, Lithospheric Mantle and Asthenosphere.

The temperature at the base of the crust may be expressed using computed values of depth to base of lithosphere (z_L)and basal heat flow (as was done by Fullea et al, 2007) or measured values of surface heat flow (as proposed by Alexandrino and Hamza, 2008).

The main advantage of this latter approach is that it provides more reliable information on temperature field and on thermal properties at depth in the lower crust.

For Oceanic regions (Alexandrino & Hamza, 2008)

$$\left(\frac{1}{2}\rho a \alpha \theta - \frac{1}{2}\rho a \alpha Ta kc\right)zL^{2} + \left(zc \rho a kc - zc \rho c kc - Lo \rho a kc + \frac{1}{2}\rho a \alpha \delta + \frac{1}{2}zc \rho a \alpha Ta kc + E \rho c kc - zc \rho a \alpha \theta - \frac{1}{2}\rho a \alpha Ta zc \Delta k - \frac{1}{2}\rho a \alpha Ta E km + E \rho w kc\right)zL - zc^{2}\rho c \Delta k + zc^{2}\rho a \Delta k + E^{2}\rho c km + E^{2}\rho w km + \frac{1}{2}zc^{2}\rho a \alpha Ta \Delta k - Lo \rho a E km + zc \rho a E km + \frac{1}{2}zc^{2}\rho a \alpha \theta - \frac{1}{2}zc \rho a \alpha \delta - zc \rho c E km - Lo \rho a zc \Delta k + E \rho w zc \Delta k + E \rho c zc \Delta k + \frac{1}{2}zc \rho a \alpha Ta E km = 0$$

Simplified as (Fullea et al, 2007):

$$z_L^2(T_a k_c - \theta) + z_L \left(z_c \left(T_a (k_m - 2k_c) + 2\theta \right) - \delta + T_a E k_m \frac{2k_c}{\rho_a \alpha} \left[(\rho_a - \rho_c) z_c + \eta \right] \right) + \left(z_c \left[\delta - T_a \left(z_c \Delta k + E k_m \right) - z_c \theta \right] - \frac{2}{\rho_a \alpha} \left[(z_c \Delta k + E k_m) (\eta + (\rho_a - \rho_c) z_c) \right] \right) = 0$$

The relation for the thickness of the lithosphere is:

$$z_L^2(T_a k_c - \theta) + z_L \left(z_c \left(T_a (k_m - 2k_c) + 2\theta \right) - \delta + T_a E k_m - \frac{2k_c}{\rho_a \alpha} \left[(\rho_a - \rho_c) z_c + \eta \right] \right) + \left(z_c \left[\delta - T_a \left(z_c \Delta k + E k_m \right) - z_c \theta \right] - \frac{2}{\rho_a \alpha} \left[(z_c \Delta k + E k_m) (\eta + (\rho_a - \rho_c) z_c) \right] \right) = 0$$

The relation for geoid height becomes:

$$N = -\frac{\pi G}{g} \begin{bmatrix} \rho_w E^2 + \frac{2\beta}{3} (z_c^3 - E^3) + (\beta E + \rho_c^T) (z_c^2 - E^2) \\ + (z_{\max}^2 - z_c^2) \rho_a + \rho_a \alpha \frac{T_a - T_{mh}}{3} [(z_L - z_c) (z_L + 2z_c)] \end{bmatrix} + N_0$$

The combined solution of these equations allow analysis of elevation and geoid height under conditions of thermal isostasy Iterative schemes are necessary because of the non-linearity of the equations

Computational steps:

- 1- Estimate the initial values for z_c and $z_{L,}$ assuming constant density for crust and mantle;
- 2- Use the initial value of z_c for calculating the depth to the base of the lithosphere, which couples isostasy to the thermal field;
 - 3- Calculate the temperature at the base of the crust (T $_{\rm mh}$) using values of z $_c$ and z $_L$ of step 2;
 - 4- Calculate the the geoid height using z_c , z_L and T_{mh} obtained in step 3;

5- Determine the residual anomaly (calculated – observed);

6- Change the value of z_c and repeat the process until the resiual anomaly is minimized.

1 - Modules dof Input Data

			Thicknes	Thickness Lithesphere						
Input Parameters			THICKIES:	s Lilliosphere		Hydro Geope Anomaly			Equ	
	Density at top	oc t	2640.00	Equ			Equation	า 13		Termo 1
	Donaity at hattam	a a h	2020.00	eta	-8,299E+06		Beta	1,020E-02		Termo 2
	Density at bottom	ρου	2920,00		3,241E+03		а	-2,142E-11		Termo 3
	Average density	ρc m	2780,00	а	3,241E+03		b	2,575E+08		Termo 4
	Mantle density	om	3293.92	Term 1	-1,769E+08		С	1,331E+11		Soma
	Donsity asthonosphoro	02	2200.00	Term 2	2,160E+06		d	1,921E+12	_	
	Density asthenosphere	μα	3200,00	Term 3	1,349E+08		е	2,857E+14		Eq
	Density of water	ρw	1030,00		-3,096E+08		g1	3,131E+01		a
	Componention Loval	7 22	300000 00	b	-3,096E+08		g2	9,344E+09		b
	Compensation Level	ZIIIdx	300000,00	Term 4	2,355E+12		g	2,925E+11		C
	Coeficient of expansion	α	3,50E-05		1,104E+12		Sum	2.880E+14	-	soma
	Radiogenic heat	Hs	8,20E-07	С	1,250E+12		product	-6.1707E+03		d
	D parameter	hr	1.05E+04		1,250E+12		N =	-6.1707E+03		divisão
	D parameter		1,002.04	delta	2,822E+08					70
	Crustal conductivity	kc	2,5000	r1	4,2252E+03		Reference Hyd	ro Geope		
	Mantle Conductivity	km	3,2000	r2	9,1304E+04		Equation A4	(case b)		Eq
	Surface temperature	Τs	20.00	ZL	9,130E+04		$\pi G/g$	2,142E-11		kapa
		10	20,00				((pm-pw)/(pm-pa)) Е	1,205E+04		Termo 1
	Temp. base lithosphere	Та	1350,00	Zc	2,695E+04		2 ρα L _o	1,485E+07	-	Termo 2
	Elevation	E	500,00			_	(ра-рw) Е	2,115E+06	_	Tormo 2
	Gooido Astonosphoric		2320.00	Tempe	erature Moho		2 ρa L _o + (ρa-ρw) E	1,696E+07	-	Termo 4
	Geolde Asteriospheric	LU	2320,00	Eq	uation 10		Product 1	2,044E+11	-	
	Gravitational Constant	G	6,67E-11	θ	133,79		Z. ² oa	2 880E+14	-	Termo 5
	PI	рі	3,14	delta	1 1860E+08	1	-0 p^{-1}	5 960E+11		ZL
	accoloration	0	9.79	deltaK	0.70		(pa L ₀) ² / (pm-pa)	3,009E+11		Equation
	acceleration	У	3,13		511 A5	1	Sum	2,000 - 14		a
	Radiogenic heat	f	83,79	Moho	511,45		NOC =	6,18/2E+03		h

Equation A1				
Termo 1	257500000,00			
Termo 2	1,8351E+12			
Termo 3	2,5284E+13			
Termo 4	2,6132E+14			
Soma	2,8844E+14			

Equa	Equation A2				
а	7,424E+06				
b	8,050E+05				
с	8,5751E+06				
soma	1,680E+07				
d	6,539E+02				
divisão	2,570E+04				
Zc 2,570E+0					

Equation A3					
kapa	8,299E+06				
Termo 1	2,381E-03				
Termo 2	5,472E+00				
Termo 3	6,8873E+13				
Termo 4	-1,863E+14				
Termo 5	2,5517E+14				
ZL	1,0873E+05				
Z _L Equation	1,0873E+05 n A4 (case a)				
Z _L Equation a	1,0873E+05 A4 (case a) 2,142E-11				
Z _L Equation a b	1,0873E+05 A4 (case a) 2,142E-11 -4,375E+08				
Z _L Equation a b c	1,0873E+05 A4 (case a) 2,142E-11 -4,375E+08 2,880E+14				
Z _L Equation a b c d	1,0873E+05 A4 (case a) 2,142E-11 -4,375E+08 2,880E+14 1,640E+11				
Z _L Equation a b c c d Soma	1,0873E+05 A4 (case a) 2,142E-11 -4,375E+08 2,880E+14 1,640E+11 2,878E+14				

2 – Modules for Iterative Steps

Estimates of Iterative Process					
Moho depth (km) zc ref 26,95					
Base of lithosphere (km)	zL ref	91,30			

Hydro Geope Residual				
Geoide Height - calculated -4,00				
Geoide Height - observed -4,00				
Residual (observed - Calculated)	0,00			

Mantle density				
Equation 11				
ρm m	3246,96			

Study area of Fullea et al 2007 (include segments of North Africa and of the Mediterranean)

Fig. 3.14 Surface heat flow data of the Gibraltar Arc System region. Data from Fernàndez et al., (1998), Polyak et al., (1996), Verzhbitsky and Zolotarev (1989), and Rimi et al., (1998).

Thickness of crust derived from elevation and geoide height

Thickness of lithosphere derived from elevation and geoid height (This is related to the deep temperature field of the crust)

The limitations in the approach of Fullea et al (2007)

1- Does not use surface heat flux as an input parameter;

- 2- The model results are rather insensitive to changes in the thermal field;
- 3- Does not admit vertical variations in thermal properties;

4- Does not provide information on thermal field at depth Improvements proposed in the present work (Alexandrino and Hamza, 2008)

- 1- Surface heat flow is considered as an input parameter;
 - 2- Allows vertical variations in thermal properties of the crust;
 - 3- Provides information on thermal field at depth;

4- Employs a multiple iteration process for determining crustal temperatures, based on simultaneous fit to elevation, geoid height, and heat flow.

1 – Input data Modules

Fullea et al, 2007

Moho Temperature				
Equation 10				
θ	133,79 1,1860E+08			
delta				
deltaK	0,70			
T _{Moho} 511,45				

Alexandrino & Hamza, 2008

Moho Temperature						
Equation 10b						
θ	139.32					
delta	1.38E+08					
deltaK	1.09					
Param B	6.82E-04 6.32E-10 5.00E-02					
Param C						
Heat flow _{Surface}						
Moho Heat Flux	4.21E-02					
Conductivity	3.00					
T _{Moho}	451.32					

2 – Modules of Iterative Processes

Fullea et al, 2007

Alexandrino & Hamza, 2008

Single iteration - Initial Estimates				
Moho Depth (km)	zc ref	26,95		
Lithosphere Thickness (km)	zL ref	91,30		

Multiple Iteration Process				
Moho Depth (km) zc ref 26.23				
Lithosphere Thickness (km)	zL ref	83.80		
Feedback of Z based on heat flow 83.88				

Fig. 3.14 Surface heat flow data of the Gibraltar Arc System region. Data from Fernandez et al., (1998), Polyak et al., (1996), Verzhbitsky and Zolotarev (1989), and Rimi et al., (1998).

Crustal Temperature Profiles compatible with Elevation, Geoid anomaly and Heat Flow

Comparisons illustrating the differences between the results of Fullea et al (2007) and this work

F (Parameter	Fullea et al	This work	Difference	%
Eastern Alboran Basin	Moho Depth (km)	21.5	18.4	3.1	14.5%
	Depth to base of Lithosphere (km)	86.2	64.2	22.0	25.5%
	Moho Temperature	425.6	541.9	-116.3	-27.3%

	Parameter	Fullea et al	This work	Difference	%
Atlas Mountains	Moho Depth (km)	35.3	31.3	4.0	11.1%
	Depth to base of Lithosphere (km)	160.3	138.5	21.7	13.6%
	Moho Temperature	399.4	500.1	-100.6	-25.2%

Study area of Alexandrino & Hamza, 2008 (State of Rio de Janeiro)

Figura 4: Modelo digital do terreno do Estado do Rio de Janeiro, com resolução de 12".

Digital Elevation Model, Escobar, 2006

Geoid Height (State of Rio de Janeiro)

componente geoidal residual (figura 8) e efeito indireto (figura 9).

Heat Flow Map (State of Rio de Janeiro)

(Gomes and Hamza, 2006)

Temperatures & Thermal Conductivity of crust in Passa Três (RJ), from joint inversion of elevation, geoide height and heat flow

Temperatures & Thermal Conductivity of crust in Passa Três (RJ), from joint inversion of elevation, geoid height and heat flow

Conclusions

- The procedure proposed by Fullea et al (2007) allows joint inversion of elevation and geoid data but ignores the crucial role of surface heat flow in inversion. As a result the model leads to overestimation of crustal and lithospheric thickness and underestimation of moho temperatures;

- The modified method proposed in the present work allows simultaneous inversion of heat flow, elevation and geoid height. It takes into consideration vertical variations in thermal properties of the crust and provides information on the crustal temperature field at depth;

- The correlation between geoid height and heat flow is a useful tool for detailed mapping crustal temperature field in geothermal areas.

Thanks for your attention

Comparison of Lithosphere thickness (km)

Region	Fullea et al, 2007	This work
Alboran basin	100 - 110	50 - 70
Iberian Massif	100 - 120	80 - 100
Atlas Mountains	100 -140	100 -140

wavelengths (>4000 km) have been removed. Contour interval is 1 m.

Consider a lithosphere composed of four layers:

Sea water, Crust, Lithospheric Mantle and Asthenosphere.

The relation between elevation and crustal thickness is:

$$z_{c} = \frac{\rho_{a} L_{0} - E(\rho_{a} - \rho_{w}) + z_{L}(\rho_{m} - \rho_{a})}{(\rho_{m} - \rho_{c})}$$

$$\rho_m(z) = \rho_a \left(1 + \alpha \left[T_a - T_m(z) \right] \right)$$

The temperature at the base of the crust may be expressed using the known value of surface heat flow or calculated value of basal heat flow (Modified after Fullea et al, 2007):

$$T_{mh} = T_s + \frac{q_m}{k_c} (z_c + E) - \frac{f}{k_c}$$
$$T_{mh} (E, z_c, z_L) = \frac{(z_L - z_c)\theta + \delta}{z_c \Delta k + z_L k_c + E k_m}$$

Variation of Moho in geoide height – elevation domain (thinner crust means loss of buoyancy)

Variation of Moho in geoide height – elevation domain (Thicker lithosphere leads to gain of buoyancy)

1 – Input data Modules

Fullea et al, 2007

Moho Temperature		
Equation 10		
θ	133,79	
delta	1,1860E+08	
deltaK	0,70	
T _{Moho}	511,45	

Alexandrino & Hamza, 2008

Moho Temperature			
Equation 10b			
θ	139.32		
delta	1.38E+08		
deltaK	1.09		
Param B	6.82E-04		
Param C	6.32E-10		
Heat flow _{Surface}	5.00E-02		
Moho Heat Flux	4.21E-02		
Conductivity	3.00		
T _{Mobo}	451.32		

2 – Modules of Iterative Processes

Fullea et al,	2007
---------------	------

Initial Estimates			
Moho Depth (km)	zc ref	26,95	
Lithosphere Thickness (km)	zL ref	91,30	

Alexandrino & Hamza, 2008

Double Iteration Process		
Moho Depth		
(km)	zc ref	26.23
Lithosphere Thickness		
(km)	zL ref	83.80
Feedback of Z ₁ for		
Temperature		83.88